Ansys RedHawk-SC Electrothermal features multiphysics power integrity, signal integrity, thermal integrity, and mechanical stress simulation and analysis for 2.5D/3D multi-die systems.
The Ansys RedHawk-SC Electrothermal is a Multiphysics simulation platform. It delivers a complete solution for analyzing multi-die chip packages and interconnects for power integrity, layout parasitic extraction, thermal profiling, thermo-mechanical stress, and signal integrity. Integrated within the cloud-native SeaScape platform enables high-capacity electrothermal analysis for early-design exploration, post-layout design verification, and silicon signoff of stacked-die system. It is foundry certified for integrated fanout and silicon interposer technologies.
As an advanced option of Ansys RedHawk-SC, RedHawk-SC Electrothermal solves the electrical, thermal, and mechanical coupling interactions of 2.5D/3DIC structures in full detail for up to a billion instances concurrently. It provides a comprehensive prototyping and signoff solution for IC design, packaging and 3DIC system integration engineers.
eSilicon uses chip-package-system modeling and simulation to design and verify products for the 5G market.
RedHawk-SC Electrothermal meets the challenge of today’s complex 2.5D/3D IC packages with a comprehensive multiphysics approach that unifies electrical and thermal analysis at the chip, board and system levels.
Modern multi-die packages with 2.5D interposers or 3D stacking technology assemble complex integrated systems that are tightly coupled across a range of physics, including power integrity, signal integrity, thermal and mechanical stress/warpage. The only way to accurately predict the overall behavior of these systems is with a unified analysis environment that brings together market-leading engines from multiple tools into a simultaneous multiphysics solution.
RedHawk-SC Electrothermal lowers design time and design risk with integrated access to Ansys analysis algorithms, from industry-leading chip, board and system-level tools across multiple disciplines. Its range is unmatched by any other product.
This has led major foundries to certify RedHawk-SC Electrothermal as a signoff solution for their multi-die packaging technologies.
Its high capacity and silicon-correlated accuracy not only reduces risk but also allows reduced safety margins, which leads to significant reductions in power and higher performing designs.
Ansys RedHawk-SC Electrothermal solves the electrical and thermal multiphysics interactions of multi-die 2.5D/3DIC structures in full detail. It uses best-in-class engines from Ansys RedHawk-SC, including thermal and mechanical tools to solve power, SI, and stress equations for heterogeneous systems.
RedHawk-SC Electrothermal solves accurate electrothermal, mechanical stress and displacement equations. Using the elastic compute infrastructure from RedHawk-SC, it has the capacity to analyze up to a billion instances, concurrently. It includes comprehensive prototyping capabilities with early block power estimates. Thermal analysis automatically launches AEDT/Icepak to get boundary conditions from system-level analysis.
RedHawk-SC Electrothermal is a foundry-certified high-capacity electrothermal solver for 2.5D/3D prototyping and chip/package multiphysics co-analysis.
The entire 2.5D/3D package power distribution network is analyzed for IR-drop, current density and electromigration. The peak current is reported for each individual pad. These analyses are all thermal-aware, including Joule self-heating.
Accurate thermal analysis is performed on the entire system. Boundary conditions are automatically obtained by launching Ansys Electronics Desktop and Ansys Icepak for thermal analysis of the PCB/system level.
To accurately calculate signal integrity (SI) effects in the package interconnect, RedHawk-SC Electrothermal will extract the RC parasitics of both signal and power interconnects across the entire 3D stack of the multi-die package.
Ansys RedHawk-SC Electrothermal includes the market-leading analytic engine from Ansys Mechanical . It calculates mechanical stresses and warpage experienced by various elements in the package due to thermal expansion.
Ansys RedHawk-SC Electrothermal can provide early prototype feedback on the thermal and power integrity characteristics of a package based on early estimates for power drawn by each block. All results are displayed in an interactive multi-die viewer for analysis.
Multi-die systems are made up of multiple elements that are often complex designs in their own right. Also, the entire 3D assembly needs to be placed in the analysis of the complete top-level system view. RedHawk-SC Electrothermal facilitates this with an extensive library of reduced order models to capture power, thermal, signal integrity, and ESD behavior for easy compact exchange and hierarchical analysis.
Ansys RedHawk-SC Electrothermal is built on the SeaScape big data analytics platform that is designed for cloud execution on 1,000s of CPU cores with near linear scalability and extremely high capacity with low memory per core.
ANSYS REDHAWK-SC ELECTROTHERMAL RESOURCES & EVENTS
This webinar showcases tools, such as Ansys RedHawk-SC Electrothermal, and techniques for modeling multi-die systems, like HBM and PCIE interfaces, with silicon interposers, through-silicon vias (TSVs) and microbumps.
It's vital to Ansys that all users, including those with disabilities, can access our products. As such, we endeavor to follow accessibility requirements based on the US Access Board (Section 508), Web Content Accessibility Guidelines (WCAG), and the current format of the Voluntary Product Accessibility Template (VPAT).