Ansys Sherlock is the only reliability physics-based electronics design tool that provides fast and accurate life predictions for electronic hardware at the component, board and system levels in early stage design.
Ansys Sherlock provides fast and accurate life predictions for electronic hardware at the component, board and system levels in early design stages. Sherlock bypasses the ‘test-fail-fix-repeat’ cycle by empowering designers to accurately model silicon–metal layers, semiconductor packaging, printed circuit boards (PCBs) and assemblies to predict failure risks due to thermal, mechanical and manufacturing stressors--all before prototype.
With embedded libraries containing over 300,000+ parts, Sherlock rapidly converts electronic computer-aided design (ECAD) files into computational fluid dynamics (CFD) and finite element analysis (FEA) models. Each model contains accurate geometries and material properties and translates stress information into validated time-to-failure predictions. Sherlock parts databases also include a link to Ansys Granta Materials Selector.
July 2022
In 2022 R2, Ansys Sherlock includes advanced integrations with Icepak , Mechanical , and LS-DYNA , improved time to failure (TtF) predictions, and an enhanced parts database.
Users can pre- and post-process models and results from Icepak, LS-DYNA & Mechanical in Sherlock for a comprehensive, closed-loop reliability workflow.
Sherlock's TtF algorithms are updated to avoid the influence of lead singularities for improved lifetime prediction accuracy.
Updates to the Sherlock parts database include increased customization, user-defined materials, updated calculations for resin properties & laminates, and integrations with the Ansys Granta electronic parts materials database.
The Sanden Group is a Tier 1 automotive supplier of air conditioning compressors based in Japan and has locations worldwide. In 2020, Sanden Manufacturing Europe decided to test Ansys Sherlock automated design analysis software to analyze printed circuit boards (PCBs) for its electrical compressors. Using Ansys Sherlock, Sanden cut model creation time from 7 days to 1.
Electrical, mechanical, and reliability engineers can work in tandem to implement design best practices, predict product lifetimes and reduce failure risks.
Sherlock reduces expensive build-and-test iterations by virtually running thermal cycling, power-temperature cycling, vibration, shock, bending, thermal derating, accelerated life, natural frequency, and CAF to adjust designs in near real-time and achieve qualification in one round. In post-processing simulation results from
Icepak
and
Mechanical
, and
LS-DYNA
, Sherlock can predict test success and estimate warranty return rates. Icepak, Mechanical, and LS-DYNA users are more efficient by directly connecting simulation to material and manufacturing costs.
Unlike any other tool on the market, Sherlock uses files created by your design team to build 3D models of electronic assemblies for trace modeling, post-processing, and reliability predictions. This early insight immediately identifies areas of concern and allows you to adjust and retest designs quickly.
Pre- and Post-Processor for Ansys Mechanical, Icepak & LS-DYNA
Sherlock’s over 300,000+ parts materials library enables the creation of accurate and complex FEA and CFD models. These models can be imported directly into Mechanical, Icepak & LS-DYNA for improved model fidelity and analysis exported back into Sherlock for time-to-failure predictions.
Sherlock’s post-processing tool includes reporting and recommendations, a lifetime curve graph, red-yellow-green risk indicators, tabular display, graphic overlay, pinned results based on reliability goals, automated report generation and a locked IP model for review by suppliers and customers.
Sherlock’s powerful parsing engine (capable of importing Gerber, ODB++ and IPC-2581 files, etc.) and embedded libraries (containing over 200,000 parts) automatically builds box-level FEA models with accurate material properties—reducing pre-processing time from days to minutes.
Physics of Failure (PoF), or Reliability Physics, uses degradation algorithms that describe how physical, chemical, mechanical, thermal or electrical mechanisms can decline over time and eventually induce failure. Sherlock uses these algorithms to assess thermal cycling, mechanical shock, natural frequency, harmonic vibration, random vibration, bending, integrated circuit/semiconductor wear-out, thermal derating, conductive anodic filament (CAF) qualification and more.
Aging and wear-out of integrated circuits are captured through acceleration transforms for electromigration, time-dependent dielectric breakdown, hot carrier injection and negative bias temperature instability. Supplier-specific time to failure predictions for aluminum liquid electrolytic capacitors and ceramic capacitors (MLCC) is provided. Finally, Sherlock automates the thermal derating process and flags devices being used outside of the specified operation or storage temperature range.
Sherlock’s Thermal-Mech capability incorporates the effect of system-level mechanical elements (chassis, module, housing, connectors, etc.) on solder fatigue analysis by capturing complex, mixed mode loading conditions. Sherlock also supports the use of Darveaux or Syed models in Ansys Mechanical by pushing simulation-ready models of BGA, CSP, SiP, and 2.5D/3D packaging.
This includes our heatsink editor, where users can create pin- and fin-based heatsinks using fill-in fields and drop-down menus and attach them to components or PCBs . Users can also add a wide variety of conformal coatings, potting compounds, underfills, and staking adhesives so the FEA model best represents the real world.
SHERLOCK RESOURCES & EVENTS
Printed circuit boards (PCBs) are the backbone of almost all electronic devices--making PCB reliability critical for the electronics industry. In this webinar, we'll discuss how engineers can use Ansys Sherlock to predict PCB reliability, including solder fatigue, temperature cycling, random and harmonic vibration and more.
In this short video, you will learn the basics of Ansys Sherlock, our printed circuit board (PCB) reliability prediction tool. Ansys Sherlock software is meant to be used early in the design stage to analyze for possible failure risk before prototype. This short video includes Sherlock capabilities, use cases and a live demo.
In this webinar, we will discuss a range of pre-processing/modeling techniques that are available in Ansys Sherlock for addressing such challenges, as well as the relative merits of these approaches, to help you ensure you are choosing the right level of fidelity for your studies.
It's vital to Ansys that all users, including those with disabilities, can access our products. As such, we endeavor to follow accessibility requirements based on the US Access Board (Section 508), Web Content Accessibility Guidelines (WCAG), and the current format of the Voluntary Product Accessibility Template (VPAT).